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Abstract—Neural Machine Translation is a machine 
translation implemented using a neural network. The most 
common neural network used is the sequence-to-sequence model. 
The model will receive a sequence as an input, and pass it to the 
encoder, then the encoder will produce a fixed-length vector that 
represents all the words in the data. The vector will be fed to the 
decoder to produce an output sequence. This output is usually 
generated using the greedy method—taking the most probable 
word in every time step. The drawback of the greedy method is 
that its search space is very narrow (only consider one path). On 
the other hand, there is another searching algorithm called beam 
search which considers more paths than greedy. This paper 
compared two methods to see which one gives a better overall 
result. The author found that, overall, greedy method is preferable 
since the result are similar to the beam search method, but with 
lower computational time. 

Keywords—neural network, machine translation, greedy, beam 
search 

I.  INTRODUCTION 
A neural network is a learning-based agent artificial 

intelligence built from a series of algorithms to recognize 
patterns and relationships in a dataset. One of the applications of 
neural networks is neural machine translation (NMT). It is a 
more recent approach to machine translation. Unlike statistical 
machine translation (SMT), NMT uses the trained neural 
network to predict the translated output [1]. 

The Neural Machine Translation method has also changed 
Google Translate’s Phrase-Based Machine Translation (PBMT). 
PBMT breaks a sentence into words or phrases and translates 
them individually [2]. In contrast, a neural network considers the 
entire sentence in its translation process. 

The most common neural network architecture in machine 
translation problems is encoder-decoder architecture [1]. This 
architecture is also known as the sequence-to-sequence model 
because the length of input and output is not fixed—hence, 
sequence, not vector. This type of network differs from a regular 
neural network which produces a fixed number of outputs. 

 Although the sequence-to-sequence model seems to not 
involve fixed-length vectors, this encoder-decoder pair is built 
from the conjoined sequence-to-vector model and vector-to-
sequence model. Namely, the encoder that maps a sequence to a 
fixed-length vector and the decoder that receives the encoder’s 
vector and maps it into a sequence. Both models will be trained 

together to minimize its loss and maximize the conditional 
probability of a given input [3]. 

This paper emphasized on the decoder’s side after it received 
the encoder’s context vector. In each time step, the decoder will 
produce a fixed-length vector of word probabilities given the 
vectors as well as its previous predicted words. The general 
approach in choosing the next probable word is using a greedy 
algorithm, that is, taking the word with the highest probability. 

However, one drawback of the greedy method is that its 
search space is very narrow. Consequently, making it does not 
consider other paths which may give a better result. Therefore, 
another method should be considered. The author used a 
breadth-first beam search which considers the n-number of 
words—called beamwidth—in every depth layer (in this 
context: time step) [4]. 

For performance measurement, the author has done 
semantics analysis, to see qualitatively, which method output a 
translation that makes more sense. The trade-off in computation 
time would also be considered as a quantitative measurement. 

II. METHODOLOGY 
In this section, we will discuss the implemented neural 

network as well as the algorithm in the model’s inference which 
are compared together (greedy and beam search). 

A. Recurrent Neural Network (RNN) 
The encoder and decoder architecture used were based on a 

recurrent neural network (RNN). A recurrent neural network is 
a neural network that consists of hidden state 𝒉𝒉 and optional 
output 𝒚𝒚 which is produced from a variable-length sequence 𝒙𝒙 =
(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑡𝑡). At each time step t, the hidden state is updated 
by 

𝒉𝒉𝑡𝑡 = 𝑓𝑓(𝒉𝒉𝑡𝑡−1, 𝑥𝑥𝑡𝑡)         (1) 

where 𝑓𝑓 is a non-linear activation function [3]. A simple 
recurrent neural network will use the tanh activation function 
with the equation of 

𝒉𝒉𝑡𝑡 = tanh (𝑾𝑾ℎℎ𝒉𝒉𝑡𝑡−1 + 𝑾𝑾𝑥𝑥ℎ𝒙𝒙𝑡𝑡)                (2) 

where 𝑾𝑾 is the weight.  

 However, this standard RNN would suffer from a vanishing 
gradient problem, making it forget its early information (short-
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term memory). Therefore, the writer used a gated recurrent unit 
(GRU) which is an improved version of a simple RNN.  

 The difference between GRU and standard RNN is that GRU 
uses an update gate and reset gate. These are the vectors that will 
decide what information should be passed to the next unit [5]. 
They are able to retain early information better than a simple 
RNN because they will erase the information that is irrelevant to 
the predictions.  

 Mathematically, there are four important equations in a 
single unit of the gated recurrent unit. The first one is the update 
gate 

𝒛𝒛𝑡𝑡 = 𝝈𝝈�𝑾𝑾(𝑧𝑧)𝒙𝒙𝑡𝑡 + 𝑼𝑼(𝑧𝑧)ℎ𝑡𝑡−1�            (3) 

which helps the model determine the information it needs to 
carry [5]. The second one is the reset gate 

𝒓𝒓𝑡𝑡 = 𝝈𝝈�𝑾𝑾(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑼𝑼(𝑟𝑟)𝒉𝒉𝑡𝑡−1�           (4) 

that is used by the model to decide what information to forget 
[5]. The difference between Equations 3 and 4 is only in the 
weights. The third one is 

𝒉𝒉𝑡𝑡′ = tanh(𝑾𝑾𝑥𝑥𝑡𝑡 + 𝒓𝒓𝑡𝑡 ⊙ 𝑼𝑼𝒉𝒉𝑡𝑡−1)             (5) 

this will compute current memory content and the symbol ⊙ is 
a Hadamard-product (element-wise multiplication). Lastly, the 
fourth equation will decide what is the output of the current 
hidden state (memory). 

𝒉𝒉𝑡𝑡 = 𝒛𝒛𝑡𝑡 ⊙ 𝒉𝒉𝑡𝑡−1 + (1 − 𝒛𝒛𝑡𝑡) ⊙𝒉𝒉𝑡𝑡′                 (6) 

 The output of each time step t in an RNN unit is the 
conditional distribution 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥1). In other words, the 
previous output will affect the next output. By combining these 
probabilities, we can compute the probability of sequence x 
using 

𝑝𝑝(𝒙𝒙) = ∏ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥1)𝑇𝑇
𝑡𝑡=1            (7) 

which can be used to predict a new sequence. 

B. Encoder-Decoder 
The encoder on the implemented neural network consisted 

of only one layer of GRU. 

On the other side, the decoder used is an attention decoder 
which is also using one layer of GRU unit, but with the addition 
of considering the attention vector. This allows the decoder to 
focus on a different part of the encoder’s outputs for every time 
step.  Each time the model generates a word, it searches for a 
position where the most relevant information is concentrated [1]. 
That way, the context vector does not need to encode the entire 
sentence [6]. 

Visually, the encoder layers stack is 

Embedding 

GRU 

Fig 2.1 Encoder layers stack 

 

 

and the decoder layers stack is 

Embedding 

Attention 

Dropout 

ReLU 

GRU 

SoftMax 

Fig 2.2 Decoder layers stack 

Both encoder and decoder had a hidden size of 512. In 
addition to that, the writer used stochastic gradient descent as 
optimizer and negative likelihood loss to compute the model’s 
loss. 

C. Training Method 
Since the inferences were compared between greedy and 

beam search, the training method was not taken from either of 
them to avoid weight bias. Hence, the training method used is 
teacher forcing. Teacher forcing is a strategy to train a recurrent 
neural network that uses the correct input (ground truth) instead 
of the prior model’s prediction [7].  

D. Greedy 
Greedy is an algorithm that solves the problem step by step 

so that in every step the program chooses the best solution 
without considering the path ahead with the hopes that it will 
converge to the global optimum [8]. There are six components 
to define a greedy algorithm. 

1. Candidate set: contains the candidates that are chosen in 
each step. 

2. Solution set: contains the chosen candidates. 

3. Solution function: determines whether the current set 
has already achieved the solution. 

4. Selection function: criteria or rules to choose in each 
step based on the greedy characteristic.  

5. Feasibility function: check whether the chosen 
candidate is feasible or not. 

6. Objective function: the result we hope to see (maximum 
or minimum). 

The mapped elements from greedy components to this paper’s 
problem—choosing the next probable word—is 

1. Candidate set: the set of all vocabulary in the trained 
data. 

2. Solution set: the set of words in the translated sentence. 

3. Solution function: checks if the last chosen word is the 
“<EOS>” token. 

4. Selection function: picks the word with the highest 
probability. 
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5. Feasibility function: checks whether the current 
solution set plus chosen candidate has exceeded 
maximum length or not. 

6. Objective function: maximize Equation 7. 

E. Beam Search 
There are two kinds of beam search: best-first beam search 

and breadth-first search. Best-first beam search runs just like a 
best-first search, but when the queue grows beyond a 
predetermined size limit, only n highest quality nodes are 
retained. On the other hand, breadth-first beam search works like 
breadth-first search, but only a fixed number of nodes are kept 
in each depth layer [4].  

In this writing, we used the second type of beam search. 
From this point on, beam search will refer to breadth-first beam 
search. The beam search algorithm works such that 

a. From the root node, pick n highest probable words 
where n is the predetermined beam width or beam size. 
For each word, create a new decoder node. 

b. For each n decoder node created, consider only n highest 
probable words for the next output. This will create new 
𝑛𝑛2 child nodes to put in a node list.  

Note that the original algorithm considers all words, 
then filters them. A heuristic modification is needed for 
a computational reason. 

c. After producing 𝑛𝑛2 child nodes, the algorithm is going 
to filter n nodes with the highest objective function. This 
way, only n nodes remain in the node list. 

d. Repeat steps b and c until maximum depth or maximum 
sentence length is reached. If the algorithm encounters 
an end-of-sentence (EOS) token, then it is put into an 
answer list.  

e. From the answer list, choose the highest node with a 
maximum objective function. 

 
Fig 2.3 Beam search illustration 

There are several things to note when calculating beam 
search node priority. The first one is the metrics to measure the 
highest probable word. Instead of considering probability which 
ranged from [0, 1], we use log-likelihood that ranged from 
(−∞, 0]. Accordingly, the most probable word is the highest 
value of log-likelihood (near zero). 

The second one is the objective function. To decide the best 
sequence, we use the sum of log probability, defined as 

𝐹𝐹 = arg max∑ log𝑃𝑃(𝑦𝑦𝑡𝑡| 𝑥𝑥, 𝑦𝑦1, … , 𝑦𝑦𝑡𝑡−1)𝑇𝑇𝑦𝑦
𝑦𝑦=1        (8) 

where 𝑇𝑇𝑦𝑦 is the length of the sequence (or depth of a node). We 
also did use normalization, that is, dividing the objective 
function by 𝑇𝑇𝑦𝑦 to try avoiding short sentence bias. In addition to 
that, we also use the EOS token penalty. It was added to the 
objective function when the EOS token is met. EOS token 
penalty is defined as 

𝑝𝑝 =  −𝛾𝛾 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)
𝑇𝑇𝑦𝑦

            (9) 

Gamma symbol 𝛾𝛾 is an arbitrary number that is chosen. For this 
paper, the 𝛾𝛾 was divided into piecewise function 

𝛾𝛾 =  �7.5 ≤ 𝑡𝑡 ≤ 9,   𝑟𝑟 > 1.1
5 ≤ 𝑡𝑡 ≤ 6, 𝑟𝑟 ≤ 1.1           (10) 

where t is the random float number between the range and r is 
the ratio of input length to the length of the sequence.  

 The rough pseudocode of beam search will be shown in the 
next paragraph.  

function BeamSearch(n: beam_width, encoder_output) 
→ sequence of answers 
{ Returns a node answer (can be tracked to ancestors) that 
have maximum objective function } 
Algorithm 
n ← beam width 
parents ← {}; children ← {} 
answers ← {} 
root ← create new beam node 
while parents not empty do 
 for each node in parents 
  if node depth < max length and word != EOS do 
   log_prob ← decoder(inputs) 
   n_highest ← take_highest(log_prob, n) 
   for each proba in n_highest 
    create new node for proba 
    put it in children  
   endfor 
  else 
   put node in answers 
  endif 
 endfor 
 parents ← take_highest(children, n) 
 children ← {} 
endwhile 
return max(answers) 
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III. EXPERIMENTS 

A. Data Descriptions 
In this paper, the data used is the translation from English to 

Indonesian taken from Tatoeba [10]. We also limited the data to 
reduce potential bad results because of the neural network. 
Those limitations are 

1. Sentence lengths in either English or Indonesian were 
limited to 15. 

2. The English translation taken should only start with the 
word i, you, we, they, he, she, and it.  

B. Data Preprocessing 
Since the computer can not process the alphabet directly, we 

transformed the sentences into numbers first. We represented 
each word as a one-hot vector, a zero vector except the index of 
the represented word was valued as one. 

To uniform the data, sentences were lower-cased and regular 
expression was used. Regex was used to remove non-alphabetic 
characters and to make space on both sides of punctuations. For 
example, the sentence  

He’s still young. 
was transformed to 

he s still young . 

C. Hyperparameters 
As had been said before, both encoder and decoder had a 

hidden size of 512. It would be a control variable and would not 
be tweaked. For the hyperparameters, the writer only adjusted 
the training iterations.  

The purpose of tweaking training iterations is to see whether 
beam search will give good performance in small iterations or 
not. Since beam search is more computationally expensive 
compared to greedy, it is reasonable to trade the inference 
computation for training computation depending on the overall 
purpose of the use case. Training iterations that were tested are 
5,000; 10,000; 25,000; 50,000; and 100,000. 

IV. RESULTS AND DISCUSSIONS 

A. Training Iterations 
The result of training iterations is tabulated as 

Iterations Training loss Duration 

5,000 3.4451 1m 27s 

10,000 2.6111 2m 59s 

25,000 1.3333 7m 7s 

50,000 0.5103 14m 26s 

100,000 0.1457 29m 1s 

Table 4.1 Training iteration and loss data 

 

Note that the training is done with a GPU. Computation time 
using a CPU might differ. In the next section, we compared the 
performance by doing top-down analysis from the highest 
training iterations. 

B. 100,000 Training Iterations 
Firstly, we will compare beam search with width of 3 to 

greedy. Overall, greedy really did a good job because it 
predicted most of the translation correctly. From 30 sample of 
randomly chosen sentence, it only mistranslates 3 sentences, 
whereas for beam search, it mistranslate about 20 sentences. 
Several cases of mistranslate are 

1. I could see the happiness in her eyes. 

Correct translation: “Aku bisa melihat kebahagiaan di 
matanya.”  

The beam search translated it into, “Aku bisa di matanya.” This 
is semantically incorrect because the translated output has 
different meaning than the original sentence. In English, it is 
roughly translated into, “I can in her eyes.” 

Conversely, greedy method correctly translated it. 

2. I met my teacher on the way to the station. 

Correct translation: “Saya bertemu dengan guru saya dalam 
perjalanan ke stasiun.” 

Beam search translated it into, “Saya bertemu dengan guru.” In 
English, it is roughly translated into, “I met a teacher.” This 
translation made more sense compared to the first example, but 
it is not 100-percent semantically correct because it had lost 
some of its information. 

In the contrary, greedy method translation is semantically closer 
to the correct translation.  It translates the sentence into, “Saya 
bertemu dengan guru saya.” In English, “I met my teacher.” 
Compared to beam search, this translation retains more 
information (“my teacher”, not only “teacher”). 

However, both had lost the “on the way to station” information. 

3. I had to make a list of things i needed to do. 

Correct translation: “Aku harus membuat daftar tentang hal 
apa saja yang perlu aku lakukan.” 

The beam search algorithm translated it into, “Aku membuat 
daftar tentang aku tidak pernah membuat.” This translation is 
semantically incorrect. In English, “I made a list of things I never 
made.” 

Accordingly, greedy algorithm translated it into, “Aku membuat 
daftar tentang hal lain yang perlu aku lakukan,” which translated 
back into “I made a list of other things I needed to do.” 

Although both translations are not the same as the correct one, 
greedy algorithm’s translation retains all the meaning in the 
sentence, except the “must” part. 

 The author had also tried beam width of 5, 20, and 40, but 
the algorithm suffers from short sentence bias even though 
normalization and EOS penalty had been applied. 
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C. 50,000 Training Iterations 
Similar to previous section, this part will elaborate the 

performance of greedy and beam search with width of 3. 
Overall, from 30 samples of sentences, greedy got two-third 
correct while beam search got similar performance as in 100,000 
training iterations. Interestingly, there are sentences that 
mistakenly translated (word by word), but essentially means the 
same thing. For instance,   

1. Is Tom well? 

Correct translation: “Apa tom sehat?”  

The beam search translated it into, “Apa tom baik baik baik saja 
?” This is semantically similar to the correct translation, except 
that it repeats the word baik three times. In English, “baik-baik 
saja” is equivalent to the word well. 

However, greedy method had still better performance because it 
got the translation correct word by word. 

2. You are still green. 

Correct translation: “Kamu masih bau kencur.” 

In this case, both beam search and greedy translated it into, 
“Kamu masih muda,” which semantically means the same as the 
correct translation. The word “bau kencur” is a metaphor for 
“muda” or young.  

 In this attempt, the author had also tried beam width of 5, 20, 
and 40, but the algorithm suffers from the same bias as previous 
section. 

D. 25,000 Training Iterations 
The specification of beam search and greedy is still the same 

as previous section. For overall performance, greedy and beam 
search had approximately the same performance. Although, 
beam search might do slightly better. Some examples for 
translated sentence are 

1. I need more information. 

Correct translation: “Aku butuh informasi lagi.”  

Beam search translated the sentence into, “Saya butuh 
informasi,” which essentially has the same meaning as the 
correct translation, except without emphasize on the word more. 

On the other side, greedy algorithm translated this sentence into, 
“Saya butuh informasi. Dia lagi.” This means the algorithm did 
not stop when it has found a period. The model was not trained 
enough to have high probability of EOS token after a period—
in this paper, the data only consist of one sentence. 

2. We saw Jane swimming across the river 

Correct translation: “Kami melihat jane berenang 
menyeberangi sungai.” 

The beam search algorithm translated the sentence into, “Kami 
berhasil sungai.” This is semantically incorrect. But 
interestingly, it behaved similar to the first example. It has a 
tendency to produce shorter sentence.   

In the contrary, greedy method translation is, “Kami melihat 
berenang sungai sungai sungai,” which is also semantically 

incorrect. However, compared to beam search, greedy has a 
tendency to produce repeating word. Therefore, outputting 
longer sentence. 

 The changing of beam size to 5, 10, or 20 was not making 
the performance of the beam search better, but it no longer 
suffers badly from short sentence bias likewise in the previous 
examples. 

E. 10,000 Training Iterations 
The last section that will be elaborated is 10,000 iterations 

because at this point, the bad result is coming towards the 
models, not the inference algorithm. Both beam search and 
greedy performed poorly with this hyperparameter. 
Nevertheless, the writer noticed that greedy search tends to 
repeat the same word over and over again while beam search 
avoids this. One example would be 

1. I wanna visit paris New York and Tokyo someday. 

Correct translation: “Saya ingin mengunjungi paris new york 
dan tokyo suatu hari nanti.”  

The beam search translated it into, “Saya akan ke tokyo dalam 
bahasa inggris dan menjadi seorang diri.” Although the meaning 
is different, this sentence made more sense than greedy 
translation result which is “Saya akan membuat membuat dan 
menjadi makan siang dan mary dan menjadi bahasa inggris dan,” 
and it repeats too many dan word. 

 Similar to previous result, changing beam size did not give 
much impact to the performance. 

V. CONCLUSIONS 
To conclude, beam search algorithm does not give 

significant better result than greedy. Overall, considering the 
computation time and performance trade-off, one might prefer 
greedy rather than beam-search method. With high beam width, 
beam search can be very computationally expensive compared 
to greedy algorithm. 

Theoritically, beam search considers more paths than 
greedy. Hence, choosing an appropriate weighing function or 
objective function should be done in order to have a better 
performance. This is needed to make sure that we are not 
filtering out high-quality nodes. In addition to that, it should 
avoid some biases, such as a length bias that the beam search 
suffered in this paper. 

Further research can be done with another searching method 
such as hill climbing, A*, or simulated annealing. Furthermore, 
other encoder-decoder architecture or other training methods 
(e.g., training with beam search) should be tested to give beam-
search algorithm the benefit of the doubt. The weight from this 
paper’s model might not be suitable for the beam-search 
algorithm. Hence, it did not align with the theory. 
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