
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Greedy and Beam Search Approach in
Neural Machine Translation (NMT)

Maria Khelli - 135201151
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113520115@std.stei.itb.ac.id

Abstract—Neural Machine Translation is a machine
translation implemented using a neural network. The most
common neural network used is the sequence-to-sequence model.
The model will receive a sequence as an input, and pass it to the
encoder, then the encoder will produce a fixed-length vector that
represents all the words in the data. The vector will be fed to the
decoder to produce an output sequence. This output is usually
generated using the greedy method—taking the most probable
word in every time step. The drawback of the greedy method is
that its search space is very narrow (only consider one path). On
the other hand, there is another searching algorithm called beam
search which considers more paths than greedy. This paper
compared two methods to see which one gives a better overall
result. The author found that, overall, greedy method is preferable
since the result are similar to the beam search method, but with
lower computational time.

Keywords—neural network, machine translation, greedy, beam
search

I. INTRODUCTION
A neural network is a learning-based agent artificial

intelligence built from a series of algorithms to recognize
patterns and relationships in a dataset. One of the applications of
neural networks is neural machine translation (NMT). It is a
more recent approach to machine translation. Unlike statistical
machine translation (SMT), NMT uses the trained neural
network to predict the translated output [1].

The Neural Machine Translation method has also changed
Google Translate’s Phrase-Based Machine Translation (PBMT).
PBMT breaks a sentence into words or phrases and translates
them individually [2]. In contrast, a neural network considers the
entire sentence in its translation process.

The most common neural network architecture in machine
translation problems is encoder-decoder architecture [1]. This
architecture is also known as the sequence-to-sequence model
because the length of input and output is not fixed—hence,
sequence, not vector. This type of network differs from a regular
neural network which produces a fixed number of outputs.

 Although the sequence-to-sequence model seems to not
involve fixed-length vectors, this encoder-decoder pair is built
from the conjoined sequence-to-vector model and vector-to-
sequence model. Namely, the encoder that maps a sequence to a
fixed-length vector and the decoder that receives the encoder’s
vector and maps it into a sequence. Both models will be trained

together to minimize its loss and maximize the conditional
probability of a given input [3].

This paper emphasized on the decoder’s side after it received
the encoder’s context vector. In each time step, the decoder will
produce a fixed-length vector of word probabilities given the
vectors as well as its previous predicted words. The general
approach in choosing the next probable word is using a greedy
algorithm, that is, taking the word with the highest probability.

However, one drawback of the greedy method is that its
search space is very narrow. Consequently, making it does not
consider other paths which may give a better result. Therefore,
another method should be considered. The author used a
breadth-first beam search which considers the n-number of
words—called beamwidth—in every depth layer (in this
context: time step) [4].

For performance measurement, the author has done
semantics analysis, to see qualitatively, which method output a
translation that makes more sense. The trade-off in computation
time would also be considered as a quantitative measurement.

II. METHODOLOGY
In this section, we will discuss the implemented neural

network as well as the algorithm in the model’s inference which
are compared together (greedy and beam search).

A. Recurrent Neural Network (RNN)
The encoder and decoder architecture used were based on a

recurrent neural network (RNN). A recurrent neural network is
a neural network that consists of hidden state 𝒉𝒉 and optional
output 𝒚𝒚 which is produced from a variable-length sequence 𝒙𝒙 =
(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑡𝑡). At each time step t, the hidden state is updated
by

𝒉𝒉𝑡𝑡 = 𝑓𝑓(𝒉𝒉𝑡𝑡−1, 𝑥𝑥𝑡𝑡) (1)

where 𝑓𝑓 is a non-linear activation function [3]. A simple
recurrent neural network will use the tanh activation function
with the equation of

𝒉𝒉𝑡𝑡 = tanh (𝑾𝑾ℎℎ𝒉𝒉𝑡𝑡−1 + 𝑾𝑾𝑥𝑥ℎ𝒙𝒙𝑡𝑡) (2)

where 𝑾𝑾 is the weight.

 However, this standard RNN would suffer from a vanishing
gradient problem, making it forget its early information (short-

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

term memory). Therefore, the writer used a gated recurrent unit
(GRU) which is an improved version of a simple RNN.

 The difference between GRU and standard RNN is that GRU
uses an update gate and reset gate. These are the vectors that will
decide what information should be passed to the next unit [5].
They are able to retain early information better than a simple
RNN because they will erase the information that is irrelevant to
the predictions.

 Mathematically, there are four important equations in a
single unit of the gated recurrent unit. The first one is the update
gate

𝒛𝒛𝑡𝑡 = 𝝈𝝈�𝑾𝑾(𝑧𝑧)𝒙𝒙𝑡𝑡 + 𝑼𝑼(𝑧𝑧)ℎ𝑡𝑡−1� (3)

which helps the model determine the information it needs to
carry [5]. The second one is the reset gate

𝒓𝒓𝑡𝑡 = 𝝈𝝈�𝑾𝑾(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑼𝑼(𝑟𝑟)𝒉𝒉𝑡𝑡−1� (4)

that is used by the model to decide what information to forget
[5]. The difference between Equations 3 and 4 is only in the
weights. The third one is

𝒉𝒉𝑡𝑡′ = tanh(𝑾𝑾𝑥𝑥𝑡𝑡 + 𝒓𝒓𝑡𝑡 ⊙ 𝑼𝑼𝒉𝒉𝑡𝑡−1) (5)

this will compute current memory content and the symbol ⊙ is
a Hadamard-product (element-wise multiplication). Lastly, the
fourth equation will decide what is the output of the current
hidden state (memory).

𝒉𝒉𝑡𝑡 = 𝒛𝒛𝑡𝑡 ⊙ 𝒉𝒉𝑡𝑡−1 + (1 − 𝒛𝒛𝑡𝑡) ⊙𝒉𝒉𝑡𝑡′ (6)

 The output of each time step t in an RNN unit is the
conditional distribution 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥1). In other words, the
previous output will affect the next output. By combining these
probabilities, we can compute the probability of sequence x
using

𝑝𝑝(𝒙𝒙) = ∏ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥1)𝑇𝑇
𝑡𝑡=1 (7)

which can be used to predict a new sequence.

B. Encoder-Decoder
The encoder on the implemented neural network consisted

of only one layer of GRU.

On the other side, the decoder used is an attention decoder
which is also using one layer of GRU unit, but with the addition
of considering the attention vector. This allows the decoder to
focus on a different part of the encoder’s outputs for every time
step. Each time the model generates a word, it searches for a
position where the most relevant information is concentrated [1].
That way, the context vector does not need to encode the entire
sentence [6].

Visually, the encoder layers stack is

Embedding

GRU

Fig 2.1 Encoder layers stack

and the decoder layers stack is

Embedding

Attention

Dropout

ReLU

GRU

SoftMax

Fig 2.2 Decoder layers stack

Both encoder and decoder had a hidden size of 512. In
addition to that, the writer used stochastic gradient descent as
optimizer and negative likelihood loss to compute the model’s
loss.

C. Training Method
Since the inferences were compared between greedy and

beam search, the training method was not taken from either of
them to avoid weight bias. Hence, the training method used is
teacher forcing. Teacher forcing is a strategy to train a recurrent
neural network that uses the correct input (ground truth) instead
of the prior model’s prediction [7].

D. Greedy
Greedy is an algorithm that solves the problem step by step

so that in every step the program chooses the best solution
without considering the path ahead with the hopes that it will
converge to the global optimum [8]. There are six components
to define a greedy algorithm.

1. Candidate set: contains the candidates that are chosen in
each step.

2. Solution set: contains the chosen candidates.

3. Solution function: determines whether the current set
has already achieved the solution.

4. Selection function: criteria or rules to choose in each
step based on the greedy characteristic.

5. Feasibility function: check whether the chosen
candidate is feasible or not.

6. Objective function: the result we hope to see (maximum
or minimum).

The mapped elements from greedy components to this paper’s
problem—choosing the next probable word—is

1. Candidate set: the set of all vocabulary in the trained
data.

2. Solution set: the set of words in the translated sentence.

3. Solution function: checks if the last chosen word is the
“<EOS>” token.

4. Selection function: picks the word with the highest
probability.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

5. Feasibility function: checks whether the current
solution set plus chosen candidate has exceeded
maximum length or not.

6. Objective function: maximize Equation 7.

E. Beam Search
There are two kinds of beam search: best-first beam search

and breadth-first search. Best-first beam search runs just like a
best-first search, but when the queue grows beyond a
predetermined size limit, only n highest quality nodes are
retained. On the other hand, breadth-first beam search works like
breadth-first search, but only a fixed number of nodes are kept
in each depth layer [4].

In this writing, we used the second type of beam search.
From this point on, beam search will refer to breadth-first beam
search. The beam search algorithm works such that

a. From the root node, pick n highest probable words
where n is the predetermined beam width or beam size.
For each word, create a new decoder node.

b. For each n decoder node created, consider only n highest
probable words for the next output. This will create new
𝑛𝑛2 child nodes to put in a node list.

Note that the original algorithm considers all words,
then filters them. A heuristic modification is needed for
a computational reason.

c. After producing 𝑛𝑛2 child nodes, the algorithm is going
to filter n nodes with the highest objective function. This
way, only n nodes remain in the node list.

d. Repeat steps b and c until maximum depth or maximum
sentence length is reached. If the algorithm encounters
an end-of-sentence (EOS) token, then it is put into an
answer list.

e. From the answer list, choose the highest node with a
maximum objective function.

Fig 2.3 Beam search illustration

There are several things to note when calculating beam
search node priority. The first one is the metrics to measure the
highest probable word. Instead of considering probability which
ranged from [0, 1], we use log-likelihood that ranged from
(−∞, 0]. Accordingly, the most probable word is the highest
value of log-likelihood (near zero).

The second one is the objective function. To decide the best
sequence, we use the sum of log probability, defined as

𝐹𝐹 = arg max∑ log𝑃𝑃(𝑦𝑦𝑡𝑡| 𝑥𝑥, 𝑦𝑦1, … , 𝑦𝑦𝑡𝑡−1)𝑇𝑇𝑦𝑦
𝑦𝑦=1 (8)

where 𝑇𝑇𝑦𝑦 is the length of the sequence (or depth of a node). We
also did use normalization, that is, dividing the objective
function by 𝑇𝑇𝑦𝑦 to try avoiding short sentence bias. In addition to
that, we also use the EOS token penalty. It was added to the
objective function when the EOS token is met. EOS token
penalty is defined as

𝑝𝑝 = −𝛾𝛾 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)
𝑇𝑇𝑦𝑦

 (9)

Gamma symbol 𝛾𝛾 is an arbitrary number that is chosen. For this
paper, the 𝛾𝛾 was divided into piecewise function

𝛾𝛾 = �7.5 ≤ 𝑡𝑡 ≤ 9, 𝑟𝑟 > 1.1
5 ≤ 𝑡𝑡 ≤ 6, 𝑟𝑟 ≤ 1.1 (10)

where t is the random float number between the range and r is
the ratio of input length to the length of the sequence.

 The rough pseudocode of beam search will be shown in the
next paragraph.

function BeamSearch(n: beam_width, encoder_output)
→ sequence of answers
{ Returns a node answer (can be tracked to ancestors) that
have maximum objective function }
Algorithm
n ← beam width
parents ← {}; children ← {}
answers ← {}
root ← create new beam node
while parents not empty do
 for each node in parents
 if node depth < max length and word != EOS do
 log_prob ← decoder(inputs)
 n_highest ← take_highest(log_prob, n)
 for each proba in n_highest
 create new node for proba
 put it in children
 endfor
 else
 put node in answers
 endif
 endfor
 parents ← take_highest(children, n)
 children ← {}
endwhile
return max(answers)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

III. EXPERIMENTS

A. Data Descriptions
In this paper, the data used is the translation from English to

Indonesian taken from Tatoeba [10]. We also limited the data to
reduce potential bad results because of the neural network.
Those limitations are

1. Sentence lengths in either English or Indonesian were
limited to 15.

2. The English translation taken should only start with the
word i, you, we, they, he, she, and it.

B. Data Preprocessing
Since the computer can not process the alphabet directly, we

transformed the sentences into numbers first. We represented
each word as a one-hot vector, a zero vector except the index of
the represented word was valued as one.

To uniform the data, sentences were lower-cased and regular
expression was used. Regex was used to remove non-alphabetic
characters and to make space on both sides of punctuations. For
example, the sentence

He’s still young.
was transformed to

he s still young .

C. Hyperparameters
As had been said before, both encoder and decoder had a

hidden size of 512. It would be a control variable and would not
be tweaked. For the hyperparameters, the writer only adjusted
the training iterations.

The purpose of tweaking training iterations is to see whether
beam search will give good performance in small iterations or
not. Since beam search is more computationally expensive
compared to greedy, it is reasonable to trade the inference
computation for training computation depending on the overall
purpose of the use case. Training iterations that were tested are
5,000; 10,000; 25,000; 50,000; and 100,000.

IV. RESULTS AND DISCUSSIONS

A. Training Iterations
The result of training iterations is tabulated as

Iterations Training loss Duration

5,000 3.4451 1m 27s

10,000 2.6111 2m 59s

25,000 1.3333 7m 7s

50,000 0.5103 14m 26s

100,000 0.1457 29m 1s

Table 4.1 Training iteration and loss data

Note that the training is done with a GPU. Computation time
using a CPU might differ. In the next section, we compared the
performance by doing top-down analysis from the highest
training iterations.

B. 100,000 Training Iterations
Firstly, we will compare beam search with width of 3 to

greedy. Overall, greedy really did a good job because it
predicted most of the translation correctly. From 30 sample of
randomly chosen sentence, it only mistranslates 3 sentences,
whereas for beam search, it mistranslate about 20 sentences.
Several cases of mistranslate are

1. I could see the happiness in her eyes.

Correct translation: “Aku bisa melihat kebahagiaan di
matanya.”

The beam search translated it into, “Aku bisa di matanya.” This
is semantically incorrect because the translated output has
different meaning than the original sentence. In English, it is
roughly translated into, “I can in her eyes.”

Conversely, greedy method correctly translated it.

2. I met my teacher on the way to the station.

Correct translation: “Saya bertemu dengan guru saya dalam
perjalanan ke stasiun.”

Beam search translated it into, “Saya bertemu dengan guru.” In
English, it is roughly translated into, “I met a teacher.” This
translation made more sense compared to the first example, but
it is not 100-percent semantically correct because it had lost
some of its information.

In the contrary, greedy method translation is semantically closer
to the correct translation. It translates the sentence into, “Saya
bertemu dengan guru saya.” In English, “I met my teacher.”
Compared to beam search, this translation retains more
information (“my teacher”, not only “teacher”).

However, both had lost the “on the way to station” information.

3. I had to make a list of things i needed to do.

Correct translation: “Aku harus membuat daftar tentang hal
apa saja yang perlu aku lakukan.”

The beam search algorithm translated it into, “Aku membuat
daftar tentang aku tidak pernah membuat.” This translation is
semantically incorrect. In English, “I made a list of things I never
made.”

Accordingly, greedy algorithm translated it into, “Aku membuat
daftar tentang hal lain yang perlu aku lakukan,” which translated
back into “I made a list of other things I needed to do.”

Although both translations are not the same as the correct one,
greedy algorithm’s translation retains all the meaning in the
sentence, except the “must” part.

 The author had also tried beam width of 5, 20, and 40, but
the algorithm suffers from short sentence bias even though
normalization and EOS penalty had been applied.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

C. 50,000 Training Iterations
Similar to previous section, this part will elaborate the

performance of greedy and beam search with width of 3.
Overall, from 30 samples of sentences, greedy got two-third
correct while beam search got similar performance as in 100,000
training iterations. Interestingly, there are sentences that
mistakenly translated (word by word), but essentially means the
same thing. For instance,

1. Is Tom well?

Correct translation: “Apa tom sehat?”

The beam search translated it into, “Apa tom baik baik baik saja
?” This is semantically similar to the correct translation, except
that it repeats the word baik three times. In English, “baik-baik
saja” is equivalent to the word well.

However, greedy method had still better performance because it
got the translation correct word by word.

2. You are still green.

Correct translation: “Kamu masih bau kencur.”

In this case, both beam search and greedy translated it into,
“Kamu masih muda,” which semantically means the same as the
correct translation. The word “bau kencur” is a metaphor for
“muda” or young.

 In this attempt, the author had also tried beam width of 5, 20,
and 40, but the algorithm suffers from the same bias as previous
section.

D. 25,000 Training Iterations
The specification of beam search and greedy is still the same

as previous section. For overall performance, greedy and beam
search had approximately the same performance. Although,
beam search might do slightly better. Some examples for
translated sentence are

1. I need more information.

Correct translation: “Aku butuh informasi lagi.”

Beam search translated the sentence into, “Saya butuh
informasi,” which essentially has the same meaning as the
correct translation, except without emphasize on the word more.

On the other side, greedy algorithm translated this sentence into,
“Saya butuh informasi. Dia lagi.” This means the algorithm did
not stop when it has found a period. The model was not trained
enough to have high probability of EOS token after a period—
in this paper, the data only consist of one sentence.

2. We saw Jane swimming across the river

Correct translation: “Kami melihat jane berenang
menyeberangi sungai.”

The beam search algorithm translated the sentence into, “Kami
berhasil sungai.” This is semantically incorrect. But
interestingly, it behaved similar to the first example. It has a
tendency to produce shorter sentence.

In the contrary, greedy method translation is, “Kami melihat
berenang sungai sungai sungai,” which is also semantically

incorrect. However, compared to beam search, greedy has a
tendency to produce repeating word. Therefore, outputting
longer sentence.

 The changing of beam size to 5, 10, or 20 was not making
the performance of the beam search better, but it no longer
suffers badly from short sentence bias likewise in the previous
examples.

E. 10,000 Training Iterations
The last section that will be elaborated is 10,000 iterations

because at this point, the bad result is coming towards the
models, not the inference algorithm. Both beam search and
greedy performed poorly with this hyperparameter.
Nevertheless, the writer noticed that greedy search tends to
repeat the same word over and over again while beam search
avoids this. One example would be

1. I wanna visit paris New York and Tokyo someday.

Correct translation: “Saya ingin mengunjungi paris new york
dan tokyo suatu hari nanti.”

The beam search translated it into, “Saya akan ke tokyo dalam
bahasa inggris dan menjadi seorang diri.” Although the meaning
is different, this sentence made more sense than greedy
translation result which is “Saya akan membuat membuat dan
menjadi makan siang dan mary dan menjadi bahasa inggris dan,”
and it repeats too many dan word.

 Similar to previous result, changing beam size did not give
much impact to the performance.

V. CONCLUSIONS
To conclude, beam search algorithm does not give

significant better result than greedy. Overall, considering the
computation time and performance trade-off, one might prefer
greedy rather than beam-search method. With high beam width,
beam search can be very computationally expensive compared
to greedy algorithm.

Theoritically, beam search considers more paths than
greedy. Hence, choosing an appropriate weighing function or
objective function should be done in order to have a better
performance. This is needed to make sure that we are not
filtering out high-quality nodes. In addition to that, it should
avoid some biases, such as a length bias that the beam search
suffered in this paper.

Further research can be done with another searching method
such as hill climbing, A*, or simulated annealing. Furthermore,
other encoder-decoder architecture or other training methods
(e.g., training with beam search) should be tested to give beam-
search algorithm the benefit of the doubt. The weight from this
paper’s model might not be suitable for the beam-search
algorithm. Hence, it did not align with the theory.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

ACKNOWLEDGMENT
The author would like to gratitude for the help provided by

Dr. Masayu Leylia Khodra, S.T, M.T., and Dr. Nur Ulfa
Maulidevi, S.T., M. Sc. as Algorithm Strategies Instructor, Dr.
Rinaldi Munir, M. T. as Algorithm Strategies Coordinator, and
Christian Hadiwinoto, Ph.D. for giving me the idea of this
paper. The author would also like to thank friends and family
who support the author throughout the study at Institut
Teknologi Bandung.

REPOSITORY
A code implementation in this paper can be accessed here.

REFERENCES
[1] Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural Machine Translation

by Jointly Learning to Align and Translate.
[2] Le, Q. V., & Schuster, M. (2016, September 27). Google AI. Retrieved

from Google AI Blog: https://ai.googleblog.com/2016/09/a-neural-
network-for-machine.html

[3] Cho, et al. (2014). Learning Phrase Representations using RNN Encoder–
Decoder.

[4] Wilt, C., Thayer, J., & Ruml, W. (2010). A Comparison of Greedy Search
Algorithms. Association for the Advancement of Artificial Intelligence.

[5] Kostadinov, S. (2017, December 6). Understanding GRU Networks.
Retrieved from Towards Data Science:
https://towardsdatascience.com/understanding-gru-networks-
2ef37df6c9be

[6] Robertson, S. (n.d.). PyTorch. Retrieved from
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.ht
ml#the-seq2seq-model

[7] Brownlee, J. (2021, April 21). What is Teacher Forcing in Neural
Networks?. Retrieved from Machine Learning Mastery:
https://machinelearningmastery.com/teacher-forcing-for-recurrent-
neural-networks/

[8] Doshi, K. (2021, April 2). Foundations of NLP Explained Visually: Beam
Search, How It Works. Retrieved from Towards Data Science:
https://towardsdatascience.com/foundations-of-nlp-explained-visually-
beam-search-how-it-works-1586b9849a24

[9] Munir, R. (2022). Informatika ITB. Retrieved from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag1.pdf

[10] Tatoeba. (n.d.). Retrieved from Tatoeba: https://tatoeba.org/en/downloads

DECLARATION
I hereby declare that this research paper is my own writing,

not an adaptation, translation, or plagiarism.

Bandung, 20 Mei 2022

Maria Khelli

13520115

https://github.com/khelli07/ds-beam-search-mt/blob/main/beam_search.ipynb

	I. Introduction
	II. Methodology
	A. Recurrent Neural Network (RNN)
	B. Encoder-Decoder
	C. Training Method
	D. Greedy
	E. Beam Search

	III. Experiments
	A. Data Descriptions
	B. Data Preprocessing
	C. Hyperparameters

	IV. Results and Discussions
	A. Training Iterations
	B. 100,000 Training Iterations
	C. 50,000 Training Iterations
	D. 25,000 Training Iterations
	E. 10,000 Training Iterations

	V. Conclusions
	Acknowledgment
	Repository
	References
	Declaration

